

Unusual Differences between the Average Mn-Se and Mn-S Distances and
between Se-C and S-C Distances in $(\text{NMe}_4)_2[\text{Mn}(\text{QPh})_4]$ ($\text{Q} = \text{Se, S}$)

Norikazu UEYAMA, Atsushi KAJIWARA, Noritaka YASUOKA[†] and Akira NAKAMURA*

Department of Macromolecular Science, Faculty of Science,
Osaka University, Toyonaka, Osaka 560

[†]Basic Research Institute, Himeji Institute of Technology, Himeji, Hyogo 671-22

Crystal structures of $(\text{NMe}_4)_2[\text{Mn}^{\text{II}}(\text{SePh})_4]$ and $(\text{NMe}_4)_2[\text{Mn}^{\text{II}}(\text{SPh})_4]$ were determined to compare their structures, properties and catalytic activities. Both complexes have a tetrahedral geometry of MnSe_4 or MnS_4 core. An unusual difference (0.22 Å) between Mn-Se and Mn-S distances, and a large difference (0.22 Å) between Se-C and S-C were found, compared with those (0.11 Å and 0.15 Å, respectively) in $(\text{NMe}_4)_2[\text{M}^{\text{II}}(\text{QPh})_4]$ ($\text{M} = \text{Cd, Zn}; \text{Q} = \text{Se, S}$). The differences are ascribed to the stronger Mn-S π -bonding character than those of Cd-S, Zn-S and Fe-S.

Importance of cysteine thiolate coordination in many metalloenzymes is well known. Manganese(II-IV) complexes have been investigated as models of biological redox sites. Unique function of a selenocysteine ligand has been found for some oxidoreductases such as formate dehydrogenase¹⁾ and hydrogenase.²⁾ Biologically relevant redox reaction by Mn(II) complexes having thiolate or selenolate ligands is of interest since dioxygen is available as oxidant in biological systems. Only a few studies using Mn(II) thiolate model complex have concerned with the air oxidation of organic substrates.³⁾ We have communicated the catalytic activity of $(\text{NMe}_4)_2[\text{Mn}^{\text{II}}(\text{QPh})_4]$ ($\text{Q} = \text{Se, S}$) for the air oxidation of benzoin, benzhydrol and benzaldehyde.⁴⁾

In this paper, the crystal structures of $(\text{NMe}_4)_2[\text{Mn}(\text{SePh})_4]$ (**1**)⁵⁾ and $(\text{NMe}_4)_2[\text{Mn}(\text{SPh})_4]$ (**2**)⁶⁾ are described to compare the nature of Mn-Se and Mn-S bondings. **1** and **2** were synthesized from $\text{MnCl}_2 \cdot 4\text{H}_2\text{O}$ and Me_4NCl , and Me_3SiSePh ⁷⁾ or thiophenol in methanol as described for the synthesis of $(\text{NMe}_4)_2[\text{Zn}(\text{QPh})_4]$ and $(\text{NMe}_4)_2[\text{Cd}(\text{QPh})_4]$ in the previous paper.⁸⁾ Both complexes are air sensitive.

Table. 1. Comparison of the average distances of M-Q and Q-C bonds in $[\text{M}^{\text{II}}(\text{QPh})_4]^{2-}$

M(II)	M - Se	M - S	Difference	M(II)	Se - C	S - C	Difference
Mn	2.564 Å	2.346 Å	0.22 Å	Mn	1.903 Å	1.680 Å	0.22 Å
Fe	2.460 ^{a)}	2.353 ^{b)}	0.11	Fe	1.907 ^{a)}	1.767 ^{b)}	0.14
Zn	2.469 ^{c)}	2.357 ^{c)}	0.11	Zn	1.907 ^{c)}	1.760 ^{c)}	0.15
Cd	2.649 ^{c)}	2.541 ^{c)}	0.11	Cd	1.903 ^{c)}	1.755 ^{c)}	0.15

a) Ref. 13. b) Ref. 9. c) Ref. 8.

Generally, a regular tetrahedral geometry of $M^{II}Q_4$ cores was found for these complexes where $M(II) = Mn, Fe, Zn, Cd$. The crystal structure of **2** is similar to that of $(NEt_4)_2[Mn(SPh)_4]$ already reported.^{10,11)} Table 1 lists the $M-Q$ bond distances and their differences between $Q = S$ and Se . Interestingly, average Mn-Se distance (2.564 Å) in **1** is longer than average Mn-S distance (2.346 Å) in **2**. The difference between Mn-Se and Mn-S is 0.22 Å which is abnormally large, compared with other $(NMe_4)_2[M(QPh)_4]$ as briefly described in a review.¹²⁾ Surprisingly, an unusually small S-C distance (1.680 Å) was found for **2**. The average value of 1.903 Å for **1** is a regular Se-C distance as those in $(NMe_4)_2[M(SePh)_4]$. Thus, the difference (0.22 Å) between Se-C and S-C in both Mn(II) complexes is larger than those (0.15 Å) in the corresponding Zn(II) and Cd(II) complexes. Recently, Ibers and coworker has reported the crystal structure of $(NEt_4)_2[Fe(SePh)_4] \cdot MeCN$ which also has almost the same differences (0.1 Å and 0.14 Å) between the average S-C and Se-C distances and between Fe-Se and Fe-S distances, respectively, compared with the corresponding $(NEt_4)_2[Fe(SPh)_4]$ reported in the literature.^{13,14)} The unusual Mn-S bond distance is thus ascribed to the stronger donative π -bonding character of Mn-S than those of Zn-S, Cd-S, and Fe-S. This donative bonding reduces the ionicity of Mn-S bonding and thus the Mn-S bond becomes somewhat more covalent than the Mn-Se bond in **1**. The short S-C distance in **2** is also due to larger π -interaction between S $p\pi$ and phenyl π orbitals. The ionic character of the Mn-Se bond corresponds to the positive-shifted reduction potential for **1** and higher oxidation catalysis of **1** for organic substances as described in the previous paper.⁴⁾

References

- 1) J. R. Anderson and L. G. Ljungdall, *J. Bacteriol.*, **120**, 6 (1974).
- 2) M. K. Eidness, R. A. Scott, B. C. Prickril, D. V. DerVartanian, J. LeGall, I. Moura, J. J. G. Moura, and H. D. Peck, Jr., *Proc. Natl. Acad. Sci. U.S.A.*, **86**, 147 (1989).
- 3) M. Kaneko and A. Yamada, *Makromol. Chem.*, **182**, 101 (1981).
- 4) A. Kajiwara, N. Ueyama, and A. Nakamura, *Catal. Lett.*, **3**, 25 (1989).
- 5) Crystallographic data for $(NMe_4)_2[Mn(SePh)_4]$, formula = $C_{32}H_{44}N_2Se_4Mn$: $F_w = 827.47$, monoclinic, space group $P2_1$, $a = 12.146(1)$ Å, $b = 14.737(1)$ Å, $c = 9.944(1)$ Å, $\beta = 90.89(1)^\circ$, $V = 1799(0)$ Å 3 , $Z = 2$, $D_{\text{calc}} = 1.558$ g/cm 3 , No. of used data ($I_0 > 3\sigma(I)$) = 2652, $R = 0.069$, $R_w = 0.077$.
- 6) Crystallographic data for $(NMe_4)_2[Mn(SPh)_4]$, formula = $C_{32}H_{44}N_2S_4Mn$: $F_w = 639.91$, monoclinic, space group $P2_1$, $a = 11.566(7)$ Å, $b = 13.877(4)$ Å, $c = 9.413(4)$ Å, $\beta = 91.81(4)^\circ$, $V = 1510(1)$ Å 3 , $Z = 2$, $D_{\text{calcd}} = 1.426$ g/cm 3 , No. of used data ($I_0 > 3\sigma(I)$) = 2180, $R = 0.071$, $R_w = 0.093$.
- 7) M. R. Dety, *Tetrahedron Lett.*, **1978**, 5087; N. Miyoshi, H. Ishii, K. Kondo, S. Murai, and N. Sonoda, *Synthesis*, **1979**, 300.
- 8) N. Ueyama, T. Sugawara, K. Sasaki, A. Nakamura, S. Yamashita, Y. Wakatsuki, H. Yamazaki, and N. Yasuoka, *Inorg. Chem.*, **27**, 741 (1988).
- 9) D. Coucouvanis, D. Swenson, N. C. Baenziger, C. Murphy, D. G. Holah, N. Sfarnas, A. Simopoulos, and A. Kostikas, *J. Am. Chem. Soc.*, **103**, 3350, (1981).
- 10) D. G. Holah and D. Coucouvanis, *J. Am. Chem. Soc.*, **97**, 6917 (1975).
- 11) T. Costa, J. R. Dorfman, K. S. Hagen, and R. H. Holm, *Inorg. Chem.*, **22**, 4091 (1983).
- 12) A. Nakamura, N. Ueyama, and K. Tatsumi, *Pure Appl. Chem.*, **62**, 1011 (1990).
- 13) J. M. McConnachie and J. A. Ibers, *Inorg. Chem.*, **30**, 1770 (1991).
- 14) Recently, we have independently determined the crystal structure of $(NMe_4)_2[Fe(SePh)_4]$ which has almost the same differences (0.11 Å and 0.15 Å) for Fe-Q and Q-C as reported for $(NEt_4)_2[Fe(SePh)_4]$ by McConnachie and Ibers.¹³⁾

(Received May 20, 1991)